Showing posts with label Atmega 328p. Show all posts
Showing posts with label Atmega 328p. Show all posts

Friday, July 10, 2015

Building Your Own AVR / Arduino Internet of Things (IoT) Development Board Part 4

This is part 4 in a 5 part series where we build our own AVR / Arduino Internet of Things (IoT) development board, yay! In this part we will do the PCB layout and discuss how to get our PCB manufactured.


Download Eagle Files



Eagle Parts and Libraries
Libraries Used:
•Atmega 328P --> Library: SparkFun-DigitalIC Device: ATMEGA328P_PDIP
•LM317 --> Library: linear>*317 Device:317T
•Resonator ZTT16.0MHz --> Library: Adafruit Device: CERMOSCILL-THM (CERMOSCILL)
•Ceramic Cap --> Library: rcl > C-EU Device: C-EU050-030X075
•Electrolytic cap --> Library: rcl > CPOL-EU Device: CPOL-EUE2.5-6
•Resistor --> Library: resistor Device: R-EU_0207/10 (R-EU_) Package: 0207/10
•Reset switch --> Library: switch-omron Device: 10-XX
•LED --> Library: led Device: LED5MM (LED)
•Potentiometer --> Library: rcl > R-TRIMM Device: R-TRIMMT93YA
Note: Sparkfun and Adafruit libraries did not come with Eagle, but you can find them on their websites

Parts I made (included in files linked to my blog):
•ForceTronic.lbr --> All header and pin holes and 2.1mm DC Jack
•BLE_Micro_Module.lbr --> BLE Micro

Wednesday, June 17, 2015

Building Your Own AVR / Arduino Internet of Things (IoT) Development Board Part 2

This is part 2 in a 5 part series where we build our own AVR / Arduino Internet of Things (IoT) development board, yay! In this part we add the Arduino bootloader to our Atmega 328p as well as build and test a prototype of our design.



BLE Micro Shield Eagle Files 1.0 version (use at your own risk):
https://dl.dropboxusercontent.com/u/26591541/BLE%20Shield.zip


//*******************Arduino Code**********************************************
/*
  This sketch is part of a video tutorial on the ForceTronics YouTube Channel for Building Your AVR/Arduino IoT Development Board 
  which uses a Atmega 328p and a Bluetooth low energy module. 
  The bluetooth module is connected to an Arduino and the Arduino is connected to an LED. 

  This code is in the public domain.
 */

// Pin 13 has a LED connected to it
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
  
  Serial.begin(115200);
  // initialize the digital pin as an output and set it low initially
  pinMode(led, OUTPUT);
  digitalWrite(led, LOW);
}

// the loop routine runs over and over again forever:
void loop() {
  delay(30);
  String t; //create an empty string to store messages from Android
  while(Serial.available()) { //keep reading bytes while they are still more in the buffer
    t += (char)Serial.read(); //read byte, convert to char, and append it to string
  }
  
  if(t.length()) { //if string is not empty do the following
    if(t == "on") { //if the string is equal to "on" then turn LED on
      digitalWrite(led, HIGH); //Set digital pin to high to turn LED on
      Serial.write("LED is on"); //Tell the Android app that the LED was turned on
    }
    else if (t == "off") { 
      digitalWrite(led, LOW);  
      Serial.write("LED is off");
    } // turn the LED off by making the voltage LOW
  }
}